
Summary:
• Background
• Making AAA games
• What games companies ask for
• How to get those skills
• Questions

1

2

• Facilities weren’t awesome
• Parts of the roof fell off every now and then
• Very demanding
• Started with C and continued with C++

3

• Open source 2D zombie killing platform game
• Technologies: C++ and SDL
• Platforms: Windows, Linux and PSP
• Time: 3 months
• VERY simple

4

• Open source 3D action game
• Technologies: C++, Ogre3D and SDL
• Platforms: Windows and Linux
• Time: 6 months
• Final degree project
• Worked with several people
• Won a prize in the V Open Source University Contest

5

• Much better facilities
• Practice focused
• Brilliant networking opportunity
• Amazing games lab: about 30 Xbox 360 and PSP dev kits

6

Worked on several demos and prototypes

Urban Race:
• Open source time attack racing game
• Technologies: C# and XNA
• Platform: Windows
• Time: 1 month
• VERY simple

7

• Worked at Crytek UK for 2 years
• ~150 people studio
• Formerly Free Radical, known for Time Splitters
• Did AI and animation on Homefront 2

8

9

10

• Sony Computer Entertainment Europe
• 3 buildings with ~500 people
• R&D networking ~20 people
• Client/server multimedia application for PlayStation 4

11

12

Getting a big team to work on a complex system towards a goal is HARD.
Need a way to deal with the unexpected and changing requirements

Cannot apply classic waterfall model: full analysis -> design -> implementation ->
testing -> deployment

Agile methodologies like Scrum.

• Monthly releases combined with 2 week sprints
• Small teams focusing on different areas of the game
• Divide and conquer
• Less overhead for management
• Teams own their features

13

Ideas are worth practically nothing, they need to work in practise

1. Idea: come up with a set of mechanics
2. Prototype: implement the basic functionality. Quick and dirty. Make a whitebox

level, basic layout without textures nor final geometry
3. Iterate over the prototype
4. Either it makes it to the final game or it’s discarded

14

CryEngine Sandbox Editor

• Level design and scripting
• Testing
• Jump into game
• Animation editor
• …

15

• Visual Studio is widely used in the games industry
• It’s important to know how to effectively use an IDE

16

Testing is done throughout development

• QA tests the build continuously
• Some studio wide playtests
• Focus groups

17

P4 version control

Large codebase: several M lines of code

Some numbers from Crysis 2:
• Up to 150 coders
• 140 commits per day
• PC, Xbox 360 and PlayStation 3
• 2 compilers (MSVC and GCC)
• 3 configurations

Code review - Code Collaborator
• Mandatory before every commit
• A fellow programmer needs to approve your code
• Prevents bugs
• People learn from their mistakes
• Lets devs know about changes

Static code analysis - cppcheck
• Scan your C++ looking for silly mistakes
• Automated reports sent via email
• cppcheck is open source!

18

Continuous integration – buildbot/jenkins
• Builds the game 24/7
• Every platform, all configurations
• Makes sure it compiles
• Runs automatic tests
• Cannot commit without a successful build

18

Things to take into account
• TRC validation
• DLC
• Telemetry -> data balancing patches
• Bugs -> code/data patches

19

20

The talk can be summarised with this slide.

1. Use open source software to build stuff
2. Contribute back to it
3. Get exposure and build a portfolio
4. Get a job! (hence profit)

21

22

First of all, let’s do some research about what is it that companies want

Graduate position

• Check LinkedIn
• Companies you want to work for
• Mobile/Middleware/Hardware/AAA

23

Taken from real job offers for AAA and mobile studios

BSc in Computer Science

• C++: bit shifting, OO, data structures
• Math: algebra, vectors and matrices, basic motion physics
• Debugging: IDE experience, step through, find bugs
• Reading code: being comfortable with large codebases
• Communication: fluency in English (even in non English companies), know how to

explain problems, diplomacy
• Consoles: be wary of their limitations, mobile is also valid
• Efficiency: memory and time implication of algorithms, cache…
• Cross discipline: being able to talk to and work with designers, artists,

stakeholders…
• Others: databases, social APIs, AS3

24

Most important of all: have a set of FINISHED games

• They don’t need to be amazing
• Some level of polish
• Menus
• A few levels
• Music, SFX

25

26

• Most people limit themselves to pass exams
• When they graduate, they’re all the same

It’s a very competitive industry, you need a differentiating factor.

27

28

• #1GAM: Cross the finish line more often
• Extreme time management skills
• Strong community
• See what you can achieve
• Learn how to scope

Loads of fun

Check compohub, game jam calendar

29

Was part of the jury

• 24h NON STOP game jam in Lincoln University
• Theme: uranium madness
• About 50 students
• Games were simple but amazing considering the timeframe
• Other universities should follow the example
• UCLM game jam?

30

Ludum Dare #24 game
48h compo

• Open source 2D platformer
• Technologies: Java and Libgdx
• Platforms: Windows, Mac and Linux

31

• Portfolio: somewhere to showcase your projects
• Companies WILL check it out
• No need for super fancy stuff, a regular Wordpress would do it
• Make Google show good stuff about you, no drunk pics
• Use social media wisely, do not stalk people on Facebook
• Read technical articles, comment and connect with people

32

• Companies will want samples of your code
• Share early, don’t be ashamed
• Sharing forces you to improve
• Shows passion and commitment
• Way to engage with other developers
• Learn how to use Git/SVN/Mercurial…

33

Open source University Contest

• Exposure
• Meet talented students
• CV

34

The cherry on top

Libgdx game framework
• Cross platform Windows, Mac, Linux, Android, iOS, HTML5
• 2D/3D handles all the low level stuff
• Ridiculously fast, even with Java
• Used by 1.40% of ALL Google Play apps (not only games)
• Good documentation and helpful community

Benefits
• Low barrier of entry: documentation < bugs < features
• Learn from experienced devs
• Looks amazing on your CV
• Opens up doors, now I’m writing a book on it

35

36

37

